POPL 2022 (series) / CPP 2022 (series) / CPP 2022 / A Machine-Checked Direct Proof of the Steiner-Lehmus Theorem
A Machine-Checked Direct Proof of the Steiner-Lehmus TheoremInPerson
Tue 18 Jan 2022 14:45 - 15:10 at Salon III - Formalization of Logic, Algebra and Geometry Chair(s): Andrei Popescu
A direct proof of the Steiner-Lehmus theorem has eluded geometers for over 170 years. The challenge has been that a proof is only considered direct if it does not rely on reductio ad absurdum. Thus, any proof that claims to be direct must show, going back to the axioms, that all of the auxiliary theorems used are also proved directly. In this paper, we give a proof of the Steiner-Lehmus theorem that is guaranteed to be direct. The evidence for this claim is derived from our methodology: we have formalized a constructive axiom set for Euclidean geometry in a proof assistant that implements a constructive logic and have built the proof of the Steiner-Lehmus theorem on this constructive foundation.
Tue 18 JanDisplayed time zone: Eastern Time (US & Canada) change
Tue 18 Jan
Displayed time zone: Eastern Time (US & Canada) change
13:30 - 15:10 | Formalization of Logic, Algebra and GeometryCPP at Salon III Chair(s): Andrei Popescu University of Sheffield | ||
13:30 25mTalk | Semantic cut elimination for the logic of bunched implications, formalized in CoqDistinguished Paper AwardRemote CPP Daniel Frumin University of Groningen Pre-print Media Attached | ||
13:55 25mTalk | Undecidability, Incompleteness, and Completeness of Second-Order Logic in CoqRemote CPP Pre-print | ||
14:20 25mTalk | Formalising Lie algebrasRemote CPP Oliver Nash Imperial College, London Pre-print Media Attached | ||
14:45 25mTalk | A Machine-Checked Direct Proof of the Steiner-Lehmus TheoremInPerson CPP Ariel E. Kellison Cornell University Pre-print |